
Inteligência Artificial Bayesiana
Editora Dialética
As redes Bayesianas se referem a uma categoria de modelos probabilísticos que representam um conjunto de variáveis e suas dependências condicionais por um grafo acíclico direcionado. Estas redes usam o Teorema de Bayes para calcular a probabilidade de determinados eventos, tendo alguma informação disponível. Com esta prerrogativa, partem de conhecimento incompleto sobre um determinado fenômeno e, assim, permitem máquinas fazerem inferências, previsões e tomada de decisão. Existem vários modelos de tentativas de axiomatizar extensões da lógica para casos de informação incompleta.
No desenvolvimento deste livro, a programação Python foi adotada como ferramenta na modelagem das exemplificações. Juntamente a este apoio computacional, é apresentada uma introdução aos pré-requisitos teóricos que formulam a base dos processos probabilísticos discretizados. Entre estes estão: as distribuições de probabilidade, postas na Função Massa de Probabilidade – PMF e seus parâmetros; a Teoria dos Conjuntos; a Probabilidade axiomática Clássica e Empírica; e a Probabilidade Condicional, definida na Regra da Multiplicação e na Lei da Probabilidade Total, em que se insere a Probabilidade Bayesiana com o Teorema de Bayes. Esta lista de tópicos, em que estão expostos os princípios matemáticos, compõe o tema "Redes Bayesianas".
Ler mais
Ler menos
Oba, você já comprou esse livro!
Acesse o App e aproveite a leitura 😁
Você já possui este livro através da
parceria Skeelo + {partner}
Acesse o App e aproveite
a leitura 😁
Páginas
136
Peso do arquivo
6.09MB
Ano da publicação
2022
Idade indicada
Livre
Tradutor(a)
—

Sinopse
As redes Bayesianas se referem a uma categoria de modelos probabilísticos que representam um conjunto de variáveis e suas dependências condicionais por um grafo acíclico direcionado. Estas redes usam o Teorema de Bayes para calcular a probabilidade de determinados eventos, tendo alguma informação disponível. Com esta prerrogativa, partem de conhecimento incompleto sobre um determinado fenômeno e, assim, permitem máquinas fazerem inferências, previsões e tomada de decisão. Existem vários modelos de tentativas de axiomatizar extensões da lógica para casos de informação incompleta.
No desenvolvimento deste livro, a programação Python foi adotada como ferramenta na modelagem das exemplificações. Juntamente a este apoio computacional, é apresentada uma introdução aos pré-requisitos teóricos que formulam a base dos processos probabilísticos discretizados. Entre estes estão: as distribuições de probabilidade, postas na Função Massa de Probabilidade – PMF e seus parâmetros; a Teoria dos Conjuntos; a Probabilidade axiomática Clássica e Empírica; e a Probabilidade Condicional, definida na Regra da Multiplicação e na Lei da Probabilidade Total, em que se insere a Probabilidade Bayesiana com o Teorema de Bayes. Esta lista de tópicos, em que estão expostos os princípios matemáticos, compõe o tema "Redes Bayesianas".
Ficha técnica
- Autor(a) José Felipe Souza de Almeida, Emerson Cordeiro Morais, Otavio Andre Chase
- Tradutor(a) —
- Gênero Inteligência Artificial
- Editora Editora Dialética
- Páginas 136
- Ano 2022
- Edição 1ª
- Idioma Português
- ISBN 9786525230801
- Peso do arquivo 6.09MB